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Resum (CAT)
Presentem dos nous resultats en anàlisi de fluids relacionats amb l’existència de

singularitats fent servir perfils autosimilars i anàlisi d’estabilitat al voltant d’ells.

El primer resultat és una nova prova de la formació de singularitats per l’equació

d’Okamoto–Sakajo–Wunsch amb petit paràmetre fent ús d’un perfil autosimilar

aproximat. A la segona part trobem nous perfils autosimilars, radials i suaus, per

a l’equació d’Euler compressible i isentròpica. Aquest és el primer perfil d’aquest

tipus trobat pel cas de gasos monoatòmics.

Abstract (ENG)
We present two new results in Analysis of Fluids involving the existence of singu-

larities via self-similar profiles and stability analysis around them. The first result

is a new proof of the formation of singularities for the Okamoto–Sakajo–Wunsch

equation with small parameter, which is done via a stability analysis around an

approximate self-similar profile.The second result consists on the finding of new

smooth radial self-similar profiles developing singularities for the isentropic com-

pressible Euler equations. This is the first proof of such profile for the monatomic

gas case.
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Self-similar profiles in Analysis of Fluids

1. Introduction

The Navier–Stokes equation in three dimensions models the behaviour of a non-compressible fluid and is
given by

Btu ` u ¨∇u “ ´∇p ` ν∆u, (1)

where x P R3 is physical space, the velocity of the fluid is given by the vector upx , tq “ pu1, u2, u3q, we
denote the viscosity by ν and ppx , tq is the pressure. We will always denote with u ¨∇u the vector whose
i-th component is u ¨ ∇ui . The previous equation can be interpreted in terms of Newton’s second law,
because the left hand-side is the convective derivative of the velocity (derivative along the trajectories
of the fluid), and the right-hand side is the force exerted on the fluid. In order to close (1) (which has
4 unknowns p and ui but only a 3-component equation), one notes that the incompressibility of the fluid
implies divpuq “ 0 (volumes are preserved along trajectories), which together with (1) forms a closed
system.

In order to drop the pressure one can take the curl in (1) and define the vorticity to be ω “ curlpuq,
obtaining

pBt ` u ¨∇qω “ ω ¨∇u ` ν∆ω. (2)

The incompressibility condition div u “ 0 ensures that u can be recovered from ω via a nonlocal operator,
thanks to the Biot–Savart law:

upxq “
1

4π
p.v.

ż

R3

px ´ yq ^ ωpyq

|x ´ y |3
, (3)

where p.v. refers to the fact that the integral is done in the principal value sense1. The system formed
by (2) and (3) has been widely studied, and the smooth existence of solutions (or a counterexample) would
solve the famously known Millenium Clay Problem [14]2. A principal difficulty of this problem is the fact
that there is a nonlocal operator in the RHS, due to the fact that u is recovered from ω via a nonlocal
operator. In order to reflect this quadratic nonlinear term, Constantin, Lax and Majda [8], introduced the
following one dimensional model equation:

ωt “ ´2ωHω. (4)

Here H represents the Hilbert Transform which is a nonlocal operator in dimension 1, given by Hω “
1
π p.v.

ş ωpyq
x´y dy . Some important properties of the Hilbert Transform are that it is bounded as H : L2pRq Ñ

L2pRq, or that it commutes with derivatives, that is Hpf 1q “ pHf q1 for all f P H1pRq3. A reference
introducing the Hilbert Transform is [25].

The constant ´2 in (4) makes no special role (it just rescales the solutions), and it is only fixed for
the sake of comparing the model with other models. The main advantage of this model is that there are
explicit formulas for the solutions, due to the following property of the Hilbert Transform:

1A principal value integral is done by removing a ball of radius ε around the singularity (in this case y “ x) and taking εÑ 0.
At infinity, one integrates in a ball Bp0,Rq and takes R Ñ `8 (in the way of a Riemann indefinite integral).

2To be precise, the Millenium Clay Problem also requires those solutions to be finite energy, that is, up¨, tq uniformly
bounded in L2

pRq.
3For the reader unfamiliar with Sobolev spaces, H1

pRq is basically the space of f P L2
pRq with a derivative f 1 P L2

pRq.
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Theorem 1.1 (Titchmarsh theorem [26]). Let f , g P L2pRq and let H Ă C be the upper half-plane of the
complex plane. We have that g “ Hf if and only if there exists an holomorphic function on the upper half
plane G : HÑ C such that G px ` iyq converges almost everywhere to f pxq ` igpxq as y Ñ 0. Moreover,
in that case, G can be taken in L2pHq, that is

ş

H |G pzq|
2 ă 8.

From now on, we denote f̌ pxq “ f pxq ` iHf pxq, which admits an holomorphic extension to the upper
half plane by the previous theorem. Looking at our equation ωt “ ´2ωHω, let G be that holomorphic
extension of ω̌. The function iG 2 is holomorphic, and its real part over the real line is ´2ωHω. Therefore,
if we solve the ODE Gt “ iG 2 for G p¨, tq holomorphic over the upper half plane, we will recover our

solution ω looking at the real part of G over the real line. The solution to that ODE is G pz , tq “ G0pzq
1´iG0pzqt

,

and the initial data G0pzq is the holomorphic extension of ω0` iHω0. One can recover ω from the real part
of G pz , tq for real z , and obtain the following theorem.

Theorem 1.2 (Constantin, Lax and Majda [8]). Let ω be a solution to (4) with ωp¨, 0q “ ω0 P H1pRq.
Then, we have that

ωpx , tq “
ω0pxq

p1` Hω0pxqtq2 ` ω0pxq2t2
. (5)

In particular, it develops a singularity if and only if exists some x with ω0pxq “ 0 and Hω0pxq ă 0.

Example 1.3. One interesting example of initial data leading to singularity is ω0pxq “
x

1`x2
, whose Hilbert

Transform is Hω0pxq “
´1

1`x2
because x´i

1`x2
“ 1

x`i is holomorphic on the upper half plane. As Hω0pxq “ ´1

and ω0pxq “ 0, it develops a singularity. Moreover, equation (5) gives us that ωpx , tq “ 1
1´t F

`

x
1´t

˘

, for
F pxq “ x

1`x2
. This is called a self-similar solution, because the solution looks the same for all times t (it

looks like F ), just rescaled horizontally and vertically by some time-dependent factor.

2. The Okamoto–Sakajo–Wunsch model

The Okamoto–Sakajo–Wunsch model (OSW for short) was introduced in [23] as a a generalization of the
CLM model. As one can observe from (4), the CLM model just substitutes the full covariant derivative pBt`
u ¨ ∇qω in 3D Euler with the term ωt , without including a term reflecting u ¨ ∇ω. The OSW model
precisely solves that, and as u “ curl´1pωq in 3D Euler, a reasonable choice in a 1D model is to take
upxq “ Λ´1ω “ ´

şx
0 ωpyq dy , because it is also an order ´1 nonlocal operator (the ´ sign in front is just

a convention). Indeed, the OSW model reads

#

ωt ` auωx “ ´2ωHω,

u “ Λ´1ω “ ´
şx
0 ω,

(6)

where a is just some fixed parameter. Note that when we write ωx , ωt , we are denoting derivatives with
subscripts, we will do so for the rest of this article. The case a “ 0 recovers the CLM model. The
cases a “ 2 and a “ ´2 are also interesting, the first one is the De Gregorio model [11] and the second
one was introduced by Córdoba, Córdoba and Fontelos, because its solutions yield solutions of the 2D
SQG equation with some symmetries [9].
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The question of the existence of singularities for this model remained a long-standing problem. First,
Castro and Córdoba showed the existence of solutions developing singularities for a ă 0 [4]. They also
showed singularities in finite time for some positive a ą 0, but using non-smooth initial data, so the question
remained whether singularities can form with smooth initial data. This was recently solved by Elgindi and
Jeong [13, 12], proving singularities can form for odd smooth initial data provided that a ą 0 is small
enough.

The proof is based on a H3pRq stability analysis around the self-similar profile for a “ 0. One does
not expect to have explicit formulas for the self-similar profile around some a small enough, but they use
the self-similar profile for CLM, F pyq “ y

1`y2 , and this will be very close to the exact self-similar profile
provided that a is small enough. The stability analysis consists in showing that the difference between
the approximate self-similar profile and the exact solution will remain much smaller than the approximate
self-similar profile, so that there is a singularity dominated by this approximate self-similar profile near the
blow up time.

The difference of our work with the previous work of [13, 12] is that we will do the stability analysis
in a space that combines L8 norms for low derivatives with L2-based norms for higher derivatives (instead
of H3pRq). In particular, this shows singularities for some non-decaying initial data (since they can be in L8,
but not in L2). More importantly, the L8 analysis requires different techniques around the singularity, and
we will use the complex structure of the Hilbert Transform, which is at the core of our proof. In this short
presentation, we intend to give a brief overview of the proof rather than proving all the estimates. This
proof is joint work with Tristan Buckmaster, Javier Gómez-Serrano and Federico Pasqualotto.

2.1 Formulation

First of all, let us note that equation (6) gives odd solutions for odd initial data, because the Hilbert
Transform changes parity (and therefore Λ´1 respects parity). From now on, when we talk about the OSW
model, we will be talking about odd solutions.

As we already outlined, the main idea of this strategy is to consider ω solving OSW for a small
enough, substract the self-similar profile F pyq “ y

1`y2 and perform some stability analysis for the difference.

However, we need to choose the rescaling for our self-similar profile. For CLM we had 1
1´t F

`

x
1´t

˘

, but one

expects those factors 1
1´t to change a bit as we change the parameter a.

The fundamental idea to do that temporal rescaling with the so-called modulation variables, which
are fixed dynamically. This idea has been used for OSW in [12, 5] and for other equations as 2D Burgers
equations with transverse viscosity [7], the Prandtl equation [6, 10], the 2D compressible Euler equation [3,
19] or the 3D compressible Euler equation [2], to cite some. The idea is to consider a rescaled profile

of the form 1
λptqF

`µptqx
λptq

˘

, where λptq and µptq are called modulation variables, and their evolutions will

fixed dynamically in order to satisfy some property4. In our case, we will use them to fix the scalar
quantities ωxp0, tq and Hωp0, tq. We will choose λptq and µptq such that those quantities are completely

absorbed by the profile, in other words, if we let q “ ω´ 1
λptqF

`µptqx
λptq

˘

, we will have qxp0, tq “ Hqp0, tq “ 0.

Oddness yields qp0, tq “ Hqxp0, tq “ 0 directly, so our way of fixing λ and µ will ensure that q̌ and q̌x

vanish at zero, ensuring that the self-similar part is the dominating part close enough to zero.

4This will agree with the rescaled solutions showed for the CLM model because we will have that both 1
λptq

and µptq
λptq

approach 1
1´t

as aÑ 0.
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As we want to show that our self-similar profile dominates, it will be easier to work in the self-similar
variables, where our profile is constant and we only have to worry about the size of the difference. This is
achieved by fixing ds

dt “
1

λpsptqq (with sp0q “ 0) and y “ µpsqx
λpsq as the new time and space variables. Note

that we make λ and µ depend on s instead of t. This will make calculations simpler, since we plan to work
in py , sq variables. If we write (6) in py , sq, the equation for q reads

qs `
µs
µ

ypFy ` qy q ´

ˆ

λs
λ
` 1

˙

pF ` q ` yFy ` yqy q “ Mq ` N ` aJ̃. (7)

Here, N is a quadratic term including all the terms of the form qHq and qyΛ´1q. It will not be relevant
because we will work with }q}X ď ε, so }N}X À ε2 is much smaller (X is an appropriate Banach space
that we will introduce later). The term aJ̃ is an inhomogeneous term independent of q (only depending
on F ) and it will be small because a is small enough. The term Mq is a linear term in q and will be the
important term that does not allow q to grow a lot, yielding stability.

2.2 The modulation

In order to control (7), we need to control the modulation variables µpsq and λpsq. As we already told, we
are going to fix λ and µ such that q1p0q “ Hqp0q “ 0, which gives us a second order cancellation of q̌
around the origin. Therefore, we will assume that the initial data satisfy q10p0q “ 0, Hq0p0q “ 0 and we
will get a system of evolution equations for pλ,µq just by taking a spatial derivative or a Hilbert Transform
in (9) and asking for d

ds qy p0q “ 0 and d
ds Hqp0q “ 0. Doing so, we get

$

’

’

’

&

’

’

’

%

ˆ

λs
λ
` 1´ ak2

˙

“ aHpFyΛ´1q ` qyΛ´1F ` qyΛ´1qqp0q,

ˆ

µs
µ
´ ak1

˙

“ 2aHpFyΛ´1q ` qyΛ´1F ` qyΛ´1qqp0q,

(8)

where k2 “ HpFyΛ´1F qp0q “ logp2q´1{2 and k1 “ 2k2´1 “ ´2`2 logp2q. Therefore, in order to control
the modulation, we just need to control the quantity HpFyΛ´1q ` qyΛ´1F ` qyΛ´1qqp0q, which seems
feasible, because we will take q to be small enough.

Using (8), it is useful to rewrite equation (7) as

qs “ M0q ` aM1q ` aP ` N ` aJ, (9)

where

aP “ pF ` q ´ yFy ´ yqy qHpqyΛ´1F ` FyΛ´1q ` qyΛ´1qqp0q,

M0q “ ´q ´ yqy ´ 2qHF ´ 2FHq.

The term pM0q ` aM1qq is the linear term from before, but we have put together all the terms Opaq
in aM1q, and keep the important terms in M0q. The term aP comes from the modulation we have just
discussed. Lastly, N is a non-linear term as before, and aJ is the inhomogeneous term different from the
one before. One also has that J̌ and J̌y are zero at the origin.
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2.3 Bootstrap argument

The whole argument consists in showing that q remains small in a suitable Banach space under (9). We
will assume the initial bounds

}ψq̌0}L8 ď ε1{2, }ψByy q̌0}L8 ď ε2{2, }yByq0}L2 ď ε3{2 and }
a

1` y2B4yq0}L2 ď ε4{2, (10)

for some a ! ε1 ! ε2 ! ε3 ! ε4 ! 1 and ψ “ 1`y2

y2 . Then, we will try to show the uniform bounds

}q̌p¨, sq}L8 ď ε1, }q̌yy p¨, sq}L8 ď ε2, }yqy p¨, sq}L2 ď ε3 and }
a

1` y2B4yqp¨, sq}L2 ď ε4. (11)

The core of the proof is the following proposition.

Proposition 2.1. Suppose that q0 satisfies (10) and let q be the solution to (9). Then, the bounds (11)
hold uniformly in time s.

Let } ¨ }X be the norm consisting on adding up all the norms in (10), and the Banach space X formed
by functions for which that norm is finite. The norm coming from adding up all the norms in (11) may
seem different (because of the ψ weight in L8) but is in fact an equivalent norm if we restrict to the space
of q with q̌p0q “ 0 and q̌y p0q “ 0.

The strategy for proving Proposition 2.1 will be a bootstrap argument, which we are going to describe.
The local wellposedness theory (which follows from the general theory of Kato and Lai [18]), gives us that
the previous norms evolve continuously with respect to the time s. Therefore, in order to show (11) globally
in time, we argue by contradiction, assuming that (11) are satisfied up to some time s0, and that one of
the bounds is broken at time s0. If we get a contradiction from that, we will have that (11) are global in
time. Therefore, for each of the bounds, we just suppose that one is the first to be broken and we arrive
to a contradiction.

The reasons behind why do we need such variety of norms are mainly the following. First of all, we need
to control q̌ and not just q due to the fact that we will work with the complexified equation for q̌ “ q` iHq,
as in CLM. Secondly, we also need their second derivatives to get some nontrivial control at the origin
(remember q̌p0q “ q̌y p0q “ 0). Also, the L2 norms at higher derivatives avoid a loss of derivative that
we face for the estimates on }B2y q̌}8. Another good property about our norm is that one can derive the
inequality

}HpFyΛ´1q ` qyΛ´1F ` qyΛ´1qq}L8 ď C}q}X , (12)

for some constant C ą 0, which allows to control the modulation.

2.4 Example of a simplified equation

Let us illustrate the proof of Proposition 2.1 with a much simpler example. We have that aM1q and aP will
be small because M1q, P are bounded and a is small enough. On the other hand, N will be small because
it is nonlinear, so a term like qHq will be simply bounded by ε21. Therefore, let us assume we just have
to deal with the much simpler equation qs “ M0q ` aJ, instead of (9). We will show how the bootstrap
works for the }q̌}L8 estimates in this equation.
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Lemma 2.2. Let us assume that q satisfies qs “ M0q ` aJ and the initial data qp¨, 0q “ q0p¨q satisfies
assumptions (10). Then, we have the estimate }q̌p¨, sq}L8 ď ε1 holds for all times s ě 0.

Proof. The point here is that M0q admits a nice formula for its complexification, namely }M0q “ ´q̌ ´
y q̌ ` 2i F̌ q̌ 5. Using the characteristic curves y “ ηy0psq “ y0es in our equation q̌s “ }M0q ` aJ̌, we obtain
that βy0psq “ q̌pηy0psq, sq satisfies

B

Bs
βy0psq “ ´βy0 ` 2i F̌ pηy0psqqβy0psq ` aJ̌pβy0psqq.

The problem with this equation is that 2i F̌ p0q “ 2, which spoils the damping coming from ´βy0 . As
F̌ decays, there is no problem for big enough y “ ηy0psq. To solve the issue near zero we introduce the

weight ψ “ 1`y2

y2 , which decreases quadratically along trajectory lines near the origin, giving an extra ´2
damping in that region. We obtain

B

Bs
pβy0psqψpyqq “

„

´3` 2i F̌ pyq `
2

ψpyq



βy0psqψpyq ` aJ̌pyqψpyq,

where the ` 2
ψpyq in the brackets comes from the derivative hitting the numerator of ψpyq. The point here

is that the term in brackets is uniformly negative. For small y we have |2i F̌ pyq| ď 2 and 2
ψpyq is very

small, while for high y the opposite happens. Doing the calculation for all intermediate values of y one
concludes that the term in brackets is uniformly negative (for example, smaller than ´1{10). Note also
that |aJ̌pyqψpyq| ď Ca for some absolute constant C because |J̌| À y2 near the origin (it has a second
order zero at the origin). Therefore, letting Ωpsq “ βy0psqψpηy0psqq “ q̌py , sqψpyq, we conclude

B

Bs
Ω “ f psqΩpsq ` E , (13)

with some error |E | ď Ca and with f psq ď ´1
10 . We also have that Ωp0q ď ε1

2 from our assumption (10).

Finally, choose a ! ε1 small enough and assume that |Ωpsq| ď ε1 is broken at time s0, so we have
Ωps0q “ ε1 and Ω1ps0q ě 0 6. Those assumptions directly give a contradiction from (13) at s “ s0, provided
that 0 ą ´ 1

10ε1 ` Ca, which can be ensured, because a ! ε1.

Finally, as |Ωpsq| ď ε1, we obtain that }q̌p¨, sqψp¨q}L8 ď ε1 and therefore }q̌p¨, sq}L8 ď ε1.

2.5 Conclusion

Using Proposition 2.1, one concludes that }q}X remains uniformly bounded, provided q0 satisfies (10).
For now on, let us fix those assumptions for q0. Therefore, we have that ω “ F ` q solves the original
OSW equation in the rescaled variables. Moreover, we know that s “ `8 corresponds to some finite
time t “ T ˚ previous to the rescaling because dt

ds “ λpsq and λ decays exponentially as one can see
from (8), (12) and the fact that a is small enough.

5This should not be surprising, as no term in M0q has an a in front, so all the terms come from CLM, which admits a
solution via complexification.

6The same reasoning applies for Ωps0q “ ´ε1 and Ω1ps0q ď 0.
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Theorem 2.3. There exist some values a0, εi , δ, which can be chosen all small enough such that the
following holds. Let a P p0, a0s and ω0pxq “ F pxq ` q0pxq all odd, where q0 satisfies the bounds (10).
Then, we have that the solution to OSW with initial data ω0 is given by

ωpx , tq “
1

λptq

ˆ

F

ˆ

µptqx

λptq

˙

` q

ˆ

µptqx

λptq
, sptq

˙˙

,

where q satisfies the global bounds (11) and λptq Ñ 0 as t Ñ T ˚ 7. In particular, we have that
both Hωp0, tq and ωxp0, tq blow up as t Ñ T ˚.

Remark. The assumptions on q0 can be formulated in terms of ω0. Basically we require that ω0 is odd and
close enough to the self-similar profile F . The assumption Hqp0q “ qy p0q “ 0 can be satisfied by modifying
the modulation variables initial conditions λp0q, µp0q, so it does not impose a restriction on ω0.

Remark. As a final comment, let us note that our Theorem includes self-similar singularities for compactly
supported smooth initial data. As the self-similar profile F decreases, one can choose q0 so that q0pxq “
´F pxq for x R r´R, Rs and R big enough, while still satisfying assumptions (10). Choosing q0 smooth also
ensures that F ` q0 is smooth, so we can construct compactly supported and smooth initial data ω0 so
that OSW blows up in a self-similar way.

3. Self-similar profiles for isentropic compressible
Euler

The other result of this article is joint work with Tristan Buckmaster and Javier Gómez-Serrano, and
focuses on proving the existence of radial smooth self-similar profiles for the isentropic compressible Euler
or Navier–Stokes. The equation is given by

$

’

’

’

&

’

’

’

%

ρBtu ` ρu∇u “ ´∇p ` ν∆u,

ρt ` divpuρq “ 0,

ppρq “
1

γ
ργ ,

(14)

where the viscosity ν “ 0 corresponds to Euler and ν ą 0 to Navier–Stokes. The first equation corresponds
to the conservation of momentum (or equivalently, Newton’s second law). The second equation is the
conservation of mass along trajectory lines and the third one is the isentropic law for the pressure of an
ideal gas. The parameter γ is called adiabatic constant and we will center here in the monatomic ideal
gas case which corresponds to γ “ 5{3. We will also restrict to the Euler case, that is ν “ 0. In the
forthcoming paper [1], we extend the range of γ, we obtain other types of profiles and we use the Euler
profiles to perform a stability analysis for the Navier–Stokes case, obtaining self-similar singularities for the
isentropic compressible Navier–Stokes equations.

This approach is inspired in the recent series of papers [20, 22, 21], which solved the outstanding
problem of the existence of singularities for compressible Navier–Stokes with smooth initial data, for some
values of γ. However, no smooth self-similar profiles were found for the monatomic gas (γ “ 5

3) before

7We are writing λptq and µptq for notational simplicity instead of the more correct alternatives λpsptqq and µpsptqq.
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this work, so our result is completely new. The type of profiles found is also new, and in particular they
concentrate faster than those found in [20].

3.1 Self similar equation

First of all, we will always work with radial solutions to (14). We also impose ν “ 0, as we will work with
the Euler equations. We write the equation in radial coordinates upRq and ρpRq, with u being a vector in
the radial direction and R “ |x |. Then, we define α “ γ´1

2 (which is 1
3 for γ “ 5

3) and perform the change
of variables wpR, tq “ upR, tq ` 1

αρ
α and zpR, tq “ upR, tq ´ 1

αρ
α. This change of variables was proposed

by Riemann [24] and thus pw , zq are usually called the Riemann invariants. The equation obtained for the
Riemann invariants is

$

’

’

’

&

’

’

’

%

Btw `

ˆ

1` α

2
w `

1´ α

2
z

˙

BRw `
α

2R
pw2 ´ z2q “ 0,

Btz `

ˆ

1´ α

2
w `

1` α

2
z

˙

BRw ´
α

2R
pw2 ´ z2q “ 0,

(15)

which exhibit a lot of symmetry. We are looking for self-similar solutions, and inspired by the two parameter
family of scaling symmetries of (15), we try the ansatz wpR, tq “ 1

r
R

T´t W
`

R
pT´tq1{r

˘

(and the same for z).

Here, r is just a parameter, so the factor 1
r is just a constant factor that will make computations simpler.

We also observe that the lower the r , the faster that the profile will expand, as the exponent 1
r will be

bigger. Defining ξ “ R
pT´tq1{r

, one obtains that the self-similar profiles W pξq, Z pξq satisfy

$

’

’

’

&

’

’

’

%

ξBξW “
´rW ´ p1` 2αqW 2{2` p1´ αqWZ{2´ αZ 2{2

1` p1` αqW {2` p1´ αqZ{2
“

NW pW , Z q

DW pW , Z q
,

ξBξZ “
´rZ ´ p1` 2αqZ 2{2` p1´ αqWZ{2´ αW 2{2

1` p1´ αqW {2` p1` αqZ{2
“

NZ pW , Z q

DZ pW , Z q
,

(16)

which is an algebraic autonomous dynamical systems (the change ξ̃ “ logpξqmakes the system autonomous)
in two dimensions. Note that this dynamical system depends on two parameters γ and r , and that NW ,
NZ , DW , DZ are just polynomials in W and Z .

This formulation has been known since Guderley [16], and it is not difficult to prove the existence of
self-similar profiles of limited regularity C k from those equations. However, the question of existence of
smooth solutions to (16) is much more difficult. We have plotted the phase portrait in Figure 3.1. The
fundamental problem for the existence of smooth profiles is the singular point P2, defined as the intersection
of DZ “ 0 and NZ “ 0. The solutions we are looking for start at point P1 (point at infinity in the asymptotic
direction p1,´1q) at ξ “ 0, then pass smoothly through P2 at ξ “ 1 and end up reaching P3 “ p0, 0q
at ξ “ `8. The profiles starting at P1 and ending at P3 ensure that the solution wpR, tq “ R

T´t W pξq is
non-zero at R “ 0 and does not grow as R Ñ `8. Even though the profile is singular at ξ “ 0, note that
the real solution wpR, tq before rescaling is not, due to the factor R multiplying8.

8If one prefers profiles not singular at 0, one can equivalently work with ξW pξq as a profile and modify the rescaling
appropriately.
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Figure 3.1: Phase portrait of (16) at r “ 1.1 and γ “ 5{3 at different scales.

As one can see in the phase portrait, solutions going from P1 to P3 have to pass through the line DZ “ 0,
which is a major problem in terms of the equation (16), as it corresponds to ξBξZ blowing up. Thus, the
only possibility for a solution crossing DZ “ 0 smoothly, is to cross through the point P2, where both DZ

and NZ cancel and the quotient may remain bounded.

3.2 Local analysis around P2

One can look at the modified dynamical system Wζ “ NW DZ and Zζ “ NZDW , which just corre-
sponds to an appropriate reparametrization in time of our original system (because pWξ, Zξq is proportional
to pWζ , Zζq, so trajectories are locally preserved). The point P2 is an equilibrium point of the new system and
we can perform a local analysis of this point looking at the eigenvalues of the Jacobian of pNW DZ , NZDW q.

Doing that, we see there exists a value r˚pγq ą 1 (which is 3 ´
?

3 for γ “ 5
3) such that both

eigenvalues of the Jacobian are positive for r P r1, r˚pγqq. Moreover, letting kprq ě 1 to be the quotient
of the eigenvalues, we have that kprq is monotonically increasing from kp1q “ 1 to limrÑr˚ kprq “ `8.
The dynamical system theory tells us that P2 is a focus, and when k R N, generic solutions near P2 will
have limited C k regularity as we tend to P2. However, there will be two exceptional invariant curves of the
system passing smoothly through P2, which correspond to two smooth solutions of (16) through P2. One
of them agrees up to order tku with all the non-smooth trajectories, and we will focus on that one (which
we simply refer as “the” smooth solution).

Taking derivatives of our ODE (16) and evaluating at P2, one can find a recurrence for the Taylor
coefficients pWn, Znq of the smooth solution. We can see that they define a convergent series continuous
with respect to the parameter r . More importantly, we get an expression for Zn of the form Zn “

1
n´kprq Žn,

where Žn is some polynomial expression in the previous coefficients. This is of paramount importance,
because it indicates that the n-th Taylor coefficient blows up as kprq Ñ n.

3.3 Statement and idea of the proof

Theorem 3.1 (Buckmaster, Cao-Labora and Gómez-Serrano [1]). Let γ “ 5{3. There exists a value of r
for which kprq P p3, 4q, such that there is a smooth solution to (16) emanating from the point P1 at ξ “ 0,
passing smoothly through P2 at ξ “ 1 and reaching P3 asymptotically as ξ Ñ `8.
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First of all, the existence of a solution emanating from P1 follows easily from calculating its Taylor series
recurrence and showing convergence. The rest of the proof is divided in the two following propositions.

Proposition 3.2. Let γ “ 5{3. There exists a value of r with kprq P p3, 4q such that the smooth solution
around P2 coincides with the unique solution emanating from P1.

This proposition is proved via a shooting argument in r . We prove that for kprq “ 3`ε and kprq “ 4´ε
(for ε small enough) the solution around P2 stays respectively below and above the solution emanating
from P1. Continuity with respect to r ensures there is an intermediate value of r for which both solutions
agree. In order to show the expected behaviour of the solution for k “ 3 ` ε and k “ 4 ´ ε we take
advantage of the fact that |Z3| and |Z4| blow up, respectively, as εÑ 0. The argument is formalised via a
concatenation of barrier arguments involving detailed local behaviour of the solution around P2.

Proposition 3.3. Let γ “ 5{3 and k P p3, 4q. We have that the smooth solution at P2 reaches point P3

at ξ “ `8.

This proposition is also shown via barrier arguments. We also need to take into account the blow-up of
the Taylor series as k is close to 3 or 4, however we need to prove the result for all the intermediate values
as well. The strategy is to introduce a reparametrization in the barrier (singular as k approaches natural
numbers) that desingularizes the barrier conditions. After desingularization, the barriers are proved via
computer-assisted proofs. A recent example in using computer assisted-proofs for proving barrier arguments
is [17], where self-similar profiles for a model of polytropic gaseous stars are obtained. A general survey of
computer-assisted proofs in PDEs is [15].
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[9] A. Córdoba, D. Córdoba, M.A. Fontelos, “For-
mation of singularities for a transport equation
with nonlocal velocity”, Ann. of Math. 162
(2005), 1377–1389.

[10] A.-L. Dalibard, N. Masmoudi, “Separation for
the stationary Prandtl equation”, Publ. Math.
Inst. Hautes Études Sci. 130(1) (2019), 187–
297.

[11] S. De Gregorio, “On a one-dimensional model
for the three-dimensional vorticity equation”, J.
Stat. Phys. 59(5-6) (1990), 1251–1263.

[12] T.M. Elgindi, T.-E. Ghoul, N. Masmoudi, “Sta-
ble self-similar blowup for a family of nonlocal

transport equations”, Preprint (2019), https:
//arxiv.org/abs/1906.05811.

[13] T.M. Elgindi, I.-J. Jeong, “On the effects of
advection and vortex stretching”, Arch. Ration.
Mech. Anal. 235(3) (2020), 1763–1817.

[14] C.L. Fefferman, “Existence and smoothness of
the Navier–Stokes equation”, The millennium
prize problems 57 (2006), 67.
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[21] F. Merle, P. Raphaël, I. Rodnianski, J. Szef-
tel, “On the implosion of a three dimensional
compressible fluid”, Preprint (2019), https:

//arxiv.org/abs/1912.11009.
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